Paleocommunity mixing increases with marine transgression in Dinosaur Park Formation (Upper Cretaceous) vertebrate microfossil assemblages

Author:

Oreska Matthew P. J.ORCID,Carrano Matthew T.

Abstract

AbstractVertebrate microfossil assemblages in a stratigraphic sequence often yield similar assortments of taxa but at different relative abundances, potentially indicative of marginal paleocommunity changes driven by paleoenvironmental change over time. For example, stratigraphically younger assemblages in the Dinosaur Park Formation (DPF) yield proportionally more aquatic taxa, consistent with marine transgression. However, individual deposits may have received specimens from multiple source paleocommunities over time, limiting our ability to confidently identify ecologically significant, paleocommunity differences through direct assemblage comparisons. We adapted a three-source, two-tracer Bayesian mixing model to quantify proportional contributions from different source habitats to DPF microfossil assemblages. Prior information about the compositions of separate, relatively unmixed terrestrial, freshwater, and marine assemblages from the Belly River Group allowed us to define expected taxon percent abundances for the end-member habitats likely contributing specimens to the mixed deposits. We compared the mixed assemblage and end-member distributions using 21 different combinations of vertebrate taxa. Chondrichthyan, dinosaur, and amphibian occurrence patterns ultimately allowed us to parse the contributions from the potential sources to 14 of the 15 mixed assemblages. The results confirmed a significant decline in terrestrial contributions at younger DPF sites, driven primarily by increased freshwater specimen inputs—not incursions from the adjacent marine paleocommunity. A rising base level likely increased lateral channel migration and the prevalence of freshwater habitats on the landscape, factors that contributed to increased paleocommunity mixing at younger channel deposit sites. Bayesian methods can account for source-mixing bias, which may be common in assemblages associated with major paleoenvironmental changes.

Publisher

Cambridge University Press (CUP)

Subject

Paleontology,General Agricultural and Biological Sciences,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3