Affiliation:
1. Department of Geophysical Sciences, University of Chicago, Chicago, Illinois 60637;
2. Geological Institute, Slovak Academy of Sciences, Bratislava 84005, Slovakia
Abstract
Biologists increasingly appreciate the importance of community-level attributes in the functioning and temporal turnover of ecosystems, but data other than species richness are difficult to acquire over the habitat-to-regional and decadal-to-millennial scales needed to recognize biodiversity change, discriminate between natural and anthropogenic drivers, and inform theoretical and applied ecology. Death assemblages (DAs)—the actively accumulating organic remains encountered in present-day seabeds and landscapes, as distinct from permanently buried fossil assemblages—are an underexploited source of historical information at precisely these scales. Meta-analyses, dynamic modeling, and individual case studies, particularly of mollusks and mammals, reveal that DAs differ from censused living assemblages (LAs) primarily because they are temporally coarse, time-averaged samples, contrary to concerns that postmortem bias dominates. Temporal pooling predictably damps the ability of DAs to detect small-scale variation, but promotes their ability to inventory rare species; estimate the abundance structure of the metacommunity; document range changes; evaluate historic habitat use; and identify now-absent species, community states, and anthropogenically shifted baselines.
Subject
Ecology,Ecology, Evolution, Behavior and Systematics
Cited by
141 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献