Generalized adjunction and applications

Author:

Ionescu Paltin

Abstract

The linear system |K + C| ‘adjoint’ to a curve C on a projective surface was studied by the classical Italian geometers. The adjoint system to a hyperplane section H of smooth projective surface was investigated systematically, in modern terms, by Sommese [22] and Van de Ven [26]. The map associated to the linear system |K + (r−1)H|, where H is a hyperplane section of a smooth variety of arbitrary dimension r, was used to classify submanifolds of ℙn with ‘small invariants’ (e.g. degree, sectional genus, etc.); see [10]. On the other hand, Sommese [23, 24, 25] studied adjoint systems to a smooth ample divisor H on a smooth threefold X and obtained, as applications, many interesting results about the pair (X, H). As noticed independently by several authors (see e.g. [17], [4], [11]) the appearance of Mori's deep contribution [20] (see also [21]) put the subject of adjunction in a new perspective. Accordingly, the present paper–which relies heavily on Mori's results and on the contraction theorem due to Kawamata-Shokurov (see [14])–contains a systematical study of various adjoint systems to an ample (possibly non-effective) divisor on a manifold of arbitrary dimension. More precisely, the main result (which is contained in Section 1) gives the precise description of polarized pairs (X, H), where X is a complex projective mani–fold of dimension r and H an ample divisor on it (not necessarily effective), such that Kx + iH is not semiample (respectively ample) for 1 ≤ i = r + 1, r, r − 1, r − 2 (respectively i = r + 1, r, r − 1).

Publisher

Cambridge University Press (CUP)

Subject

General Mathematics

Cited by 121 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On varieties with Ulrich twisted tangent bundles;Annali di Matematica Pura ed Applicata (1923 -);2023-12-12

2. Positivity of Higher Exterior Powers of the Tangent Bundle;International Mathematics Research Notices;2023-09-28

3. Tangent, cotangent, normal and conormal bundles are almost never instanton bundles;Communications in Algebra;2023-08-17

4. On the classification of non-big Ulrich vector bundles on surfaces and threefolds;International Journal of Mathematics;2021-11-03

5. Extending rationally connected fibrations from ample subvarieties;manuscripta mathematica;2021-07-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3