Affiliation:
1. Université Côte d’Azur , CNRS, LJAD, 06108, France
Abstract
Abstract
We prove that a smooth projective variety $X$ of dimension $n$ with strictly nef third, fourth, or $(n-1)$-th exterior power of the tangent bundle is a Fano variety. Moreover, in the first two cases, we provide a classification for $X$ under the assumption that $\rho (X)\ne 1$.
Publisher
Oxford University Press (OUP)
Reference54 articles.
1. Generalized Mukai conjecture for special Fano varieties;Andreatta;Cent. Eur. J. Math.,2009
2. Special rays in the Mori cone of a projective variety;Andreatta;Nagoya Math. J.,2002
3. On covering and quasi-covering families of curves;Bonavero;J. Eur. Math. Soc.,2007
4. Connexité rationnelle des variétés de Fano;Campana;Ann. Sci. École Norm. Sup. (4),1992
5. Albanese maps of projective manifolds with nef anticanonical bundles;Cao;Ann. Sci. Ec. Norm. Super. Quatr. Ser.,2019
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Positivity of the exterior power of the tangent bundles;Proceedings of the Japan Academy, Series A, Mathematical Sciences;2023-12-11