Abstract
ABSTRACTThis paper contains a proof that the description of the phenomenon of Bose-Einstein condensation is the same whether (1) an open system is contemplated and treated on the basis of the grand canonical ensemble, or (2) a closed system is contemplated and treated on the basis of the canonical ensemble without recourse to the method of steepest descents, or (3) a closed system is contemplated and treated on the basis of the canonical ensemble using the method of steepest descents. Contrary to what is usually believed, it is shown that the crucial factor governing the incidence of the condensation phenomenon of a system (open or closed) having an infinity of energy levels is the density of statesN(E) ∝Enfor high quantum numbers, a condition for condensation beingn> 0. These results are obtained on the basis of the following assumptions: (i) For large volumesV(a) all energy levels behave likeV−θ, and (b) there exists a finite integerMsuch that it is justifiable to put for thejth energy levelEj=c V−θand to use the continuous spectrum approximation, wheneverj ≥ Mc θ τ are positive constants, (ii) All results are evaluated in the limit in which the volume of the gas is allowed to tend to infinity, keeping the volume density of particles a finite and non-zero constant. The present paper also serves to coordinate much of previously published work, and corrects a current misconception regarding the method of steepest descents.
Publisher
Cambridge University Press (CUP)
Cited by
28 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献