On the Bose-Einstein condensation

Author:

Abstract

The Bose-Einstein condensation of a gas is investigated. Starting from the well-known formulae for Bose statistics, the problem has been generalized to include a variety of potential fields in which the particles of the gas move, and the number w of dimensions has not been restricted to three. The energy levels are taken to be ε i ε s 1 , . . . . , s 10 = constant h 2 m s 1 α 1 a 1 2 + . . . + s w α a w 2 ( 1 α 2 ) the quantum numbers being s 1 , w = 1, 2, ..., and a 1 , ..., a w being certain characteristic lengths. (For α = 2, the potential field is that of the w -dimensional rectangular box; for α = 1, we obtain the w -dimensional harmonic oscillator field.) A direct rigorous method is used similar to that proposed by Fowler & Jones (1938). It is shown that the number q = w /α determines the appearance of an Einstein transition temperature T 0 ·For q≤ 1 there is no such point, while for q > 1 a transition point exists. For 1 < q≤ 2, the mean energy ϵ - per particle and the specific heat dϵ - /dT are continuous at T = T 0 · For q > 2, the specific heat is discontinuous at T = T 0 , giving rise to a A λ-point. A well-defined transition point only appears for a very large (theoretically infinite) number N of particles. T 0 is finite only if the quantity v = N/(a 1 .... a w )2/ α ¯ is finite. For a rectangular box, v is equal to the mean density of the gas. If v tends to zero or infinity as N→ ∞, then T 0 likewise tends to zero or infinity. In the case q > 1, and at temperatures T < T 0 ' there is a finite fraction N 0 /N of the particles, given by N 0 /N = 1-(T/T 0 ) q , in the lowest state. London’s formula (1938 b ) for the three-dimensional box is an example of this equation. Some further results are also compared with those given by London’s continuous spectrum approximation.

Publisher

The Royal Society

Subject

Pharmacology (medical)

Reference15 articles.

1. S .B .preuss. A kad;Einstein A.;TFiss. Ber.,1925

2. Proc. Camb. P hil;Fowler R .;Soc.,1938

3. de Groot S. R . & ten Seldam C. A. 1949 Physica 15 671.

4. Jahnke E. & Em de F . 1945 Tables

5. Kaempffer F . 1949

Cited by 159 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Effect of the three-body interactions on the reduction of the exchange dipolar term;Annals of Physics;2024-02

2. Bibliography;Statistical Mechanics;2022

3. Ideal Bose systems;Statistical Mechanics;2022

4. Color confinement and Bose-Einstein condensation;Journal of High Energy Physics;2021-08

5. Critical properties of weakly interacting Bose gases as modified by a harmonic confinement;Journal of Statistical Mechanics: Theory and Experiment;2017-07-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3