Mean turbulence statistics in boundary layers over high-porosity foams

Author:

Efstathiou Christoph,Luhar MitulORCID

Abstract

This paper reports turbulent boundary layer measurements made over open-cell reticulated foams with varying pore size and thickness, but constant porosity ($\unicode[STIX]{x1D716}\approx 0.97$). The foams were flush-mounted into a cutout on a flat plate. A laser Doppler velocimeter (LDV) was used to measure mean streamwise velocity and turbulence intensity immediately upstream of the porous section, and at multiple measurement stations along the porous substrate. The friction Reynolds number upstream of the porous section was $Re_{\unicode[STIX]{x1D70F}}\approx 1690$. For all but the thickest foam tested, the internal boundary layer was fully developed by ${<}10\unicode[STIX]{x1D6FF}$ downstream from the porous transition, where $\unicode[STIX]{x1D6FF}$ is the boundary layer thickness. Fully developed mean velocity profiles showed the presence of a substantial slip velocity at the porous interface (${>}30\,\%$ of the free-stream velocity) and a mean velocity deficit relative to the canonical smooth-wall profile further from the wall. While the magnitude of the mean velocity deficit increased with average pore size, the slip velocity remained approximately constant. Fits to the mean velocity profile suggest that the logarithmic region is shifted relative to a smooth wall, and that this shift increases with pore size until it becomes comparable to substrate thickness $h$. For all foams, the turbulence intensity was found to be elevated further into the boundary layer to $y/\unicode[STIX]{x1D6FF}\approx 0.2$. An outer peak in intensity was also evident for the largest pore sizes. Velocity spectra indicate that this outer peak is associated with large-scale structures resembling Kelvin–Helmholtz vortices that have streamwise length scale $2\unicode[STIX]{x1D6FF}{-}4\unicode[STIX]{x1D6FF}$. Skewness profiles suggest that these large-scale structures may have an amplitude-modulating effect on the interfacial turbulence.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3