Direct numerical simulations of turbulent channel flow with a rib-roughened porous wall

Author:

Suga KazuhikoORCID,Kuwata YusukeORCID

Abstract

To describe the effects of porous roughness on turbulence, we have carried out direct numerical simulations using the lattice Boltzmann method. The simulated flows are fully developed turbulent flows in channels consisting of a solid smooth top wall and a porous bottom wall with transverse porous ribs whose heights are 10 % of the channel height. The considered ratios of the rib spacing to the rib height are $w/k\simeq 1$ and 9. The Kelvin-cell structure is applied to construct faithfully the porous media whose porosities are $\varphi \ge 0.79$ . Three kinds of porous media having different permeabilities are considered. The most permeable one has an approximately one order higher permeability than that of the least permeable one. The higher permeability case is designed to have a pore scale that is the same as the rib height so that it is the most permeable case for the rib roughness with the designed porosity. In the simulations, the bulk Reynolds number is set to $Re_b=5500$ , and the corresponding permeability Reynolds numbers are $Re_K=2.2\unicode{x2013}7.5$ . The simulated field data and the drag coefficient, which includes both the pressure drag by the ribs and the frictional drag over the porous wall, are analysed to understand the characteristics of the permeable roughness in terms of permeability. The decomposition of the drag coefficient into the integrated laminar, rib-drag, dispersion and turbulence parts elucidates the transition mechanism between the typical d-type to k-type roughness depending on $Re_K$ . By the double (time and space) averaged budget equations for the dispersion and Reynolds stresses, we explain how the energy generated by the roughness transfers to turbulence through dispersion resulting in the k-type characteristics. The nominal roughness sublayer thickness and the characteristic roughness height are introduced with the parameters obtained by fitting the velocity data to Best's and Nikuradse's logarithmic velocity formulae. Along with data in the literature, it is suggested that the ratio of the characteristic roughness height to the nominal roughness sublayer thickness becomes constant irrespective of the rib spacing in the full permeable-wall turbulence at $Re_K> 7$ .

Funder

Japan Society for the Promotion of Science

Publisher

Cambridge University Press (CUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3