Author:
WHITE BRIAN L.,NEPF HEIDI M.
Abstract
Results are presented from an experimental study of shallow flow in a channel partially obstructed by an array of circular cylinders. The cylinder array is a model for emergent vegetation in an open channel, but also represents a simple sparse porous medium. A shear layer with regular vortex structures forms at the edge of the array, evolving downstream to an equilibrium width and vortex size. The vortices induce nearly periodic oscillations with a frequency that matches the most unstable linear mode for a parallel shear flow. The shear layer is asymmetric about the array interface and has a two-layer structure. An inner region of maximum shear near the interface contains a velocity inflection point and establishes the penetration of momentum into the array. An outer region, resembling a boundary layer, forms in the main channel, and establishes the scale of the vortices. The vortex structure, educed by conditional sampling, shows strong crossflows with sweeps from the main channel and ejections from the array, which create significant momentum and mass fluxes across the interface. The sweeps maintain the coherent structures by enhancing shear and energy production at the interface. A linear stability analysis is consistent with the experimental results and demonstrates that the instability is excited by the differential drag between the channel and the array.
Publisher
Cambridge University Press (CUP)
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Cited by
214 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献