The onset of transient turbulence in minimal plane Couette flow

Author:

Lustro Julius Rhoan T.ORCID,Kawahara GentaORCID,van Veen LennaertORCID,Shimizu MasakiORCID,Kokubu HiroshiORCID

Abstract

The onset of transient turbulence in minimal plane Couette flow has been identified theoretically as homoclinic tangency with respect to a simple edge state for the Navier–Stokes equation, i.e., the gentle periodic orbit (the lower branch of a saddle-node pair) found by Kawahara & Kida (J. Fluid Mech., vol. 449, 2001, pp. 291–300). The first tangency of a pair of distinct homoclinic orbits to this periodic edge state has been discovered at Reynolds number $Re\equiv Uh/\unicode[STIX]{x1D708}=Re_{T}\approx 240.88$ ($U$, $h$, and $\unicode[STIX]{x1D708}$ being half the difference of the two wall velocities, half the wall separation, and the kinematic viscosity of fluid, respectively). At $Re>Re_{T}$ a Smale horseshoe appears on the Poincaré section through transversal homoclinic points to generate a transient chaos that eventually relaminarises. In numerical experiments a sustaining chaos, which is a consequence of period-doubling cascade stemming from the upper branch of another saddle-node pair of periodic orbits, is observed in a narrow range of the Reynolds number, $Re\approx 240.40$–240.46. At the upper edge of this $Re$ range it is found that the chaotic set touches the lower branch of this pair, i.e., another edge state. The corresponding chaotic attractor is replaced by a chaotic saddle at $Re\approx 240.46$, and subsequently this saddle touches the gentle periodic edge state on the boundary of the laminar basin at the tangency Reynolds number $Re=Re_{T}$. After this crisis on the boundary of the laminar basin, for $Re>Re_{T}$, chaotic transients that eventually relaminarise can be observed.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference33 articles.

1. Recurrent motions within plane Couette turbulence

2. Basin boundary, edge of chaos, and edge state in a two-dimensional model;Vollmer;New J. Phys.,2009

3. Laminar-turbulent boundary in plane Couette flow;Schneider;Phys. Rev. E,2008

4. Newton–Krylov continuation of periodic orbits for Navier–Stokes flows

5. Edge state and crisis in the Pierce diode

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Multi-scale invariant solutions in plane Couette flow: a reduced-order model approach;Journal of Fluid Mechanics;2024-03-20

2. Direct Path from Turbulence to Time-Periodic Solutions;Physical Review Letters;2023-07-21

3. On the emergence of secondary tones in airfoil noise;Journal of Fluid Mechanics;2023-06-27

4. Homoclinic bifurcation and switching of edge state in plane Couette flow;Chaos: An Interdisciplinary Journal of Nonlinear Science;2023-06-01

5. Krylov Methods for Large-Scale Dynamical Systems: Application in Fluid Dynamics;Applied Mechanics Reviews;2023-03-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3