Multi-scale invariant solutions in plane Couette flow: a reduced-order model approach

Author:

McCormack MatthewORCID,Cavalieri André V.G.ORCID,Hwang YongyunORCID

Abstract

Plane Couette flow at Reynolds number $Re=1200$ (based on the channel half-height and half the velocity difference between the top and bottom plates) is investigated with a spatial domain designed to retain only two spanwise integral length scales. In this system, the computation of invariant solutions that are physically representative of the turbulent state has been understood to be challenging. To address this challenge, our approach is to employ an accurate reduced-order model with 600 degrees of freedom (Cavalieri & Nogueira, Phys. Rev. Fluids, vol. 7, 2022, L102601). Using the two-scale energy budget and the temporal cross-correlation of key observables, it is first demonstrated that the model contains most of the multi-scale physical processes identified recently (Doohan et al., J. Fluid Mech., vol. 913, 2021, A8); i.e. the large- and small-scale self-sustaining processes, the energy cascade for turbulent dissipation, and an energy-cascade mediated small-scale production mechanism. Invariant solutions of the reduced-order model are subsequently computed, including 96 equilibria and 43 periodic orbits. It is found that none of the computed equilibrium solutions are able to reproduce an accurate energy balance associated with the multi-scale dynamics of the turbulent state. Incorporation of unsteadiness into invariant solutions is seen to be essential for a sensible description of the multi-scale turbulent dynamics and the related energetics, at least in this type of flow, as periodic orbits with a sufficiently long period are mainly able to describe the complex spatio-temporal dynamics associated with the known multi-scale phenomena.

Funder

Engineering and Physical Sciences Research Council

Deutsche Forschungsgemeinschaft

Publisher

Cambridge University Press (CUP)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Modal-based generalised quasilinear approximations for turbulent plane Couette flow;Theoretical and Computational Fluid Dynamics;2024-04-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3