Experimental investigation of the shock-induced flow over a wall-mounted cylinder

Author:

Ozawa H.ORCID,Laurence S. J.

Abstract

The unsteady aerodynamic and aerothermal phenomena resulting from the interaction between a shock-induced supersonic boundary-layer flow and a wall-mounted cylinder are investigated. Experiments were conducted in a shock tube at three different post-shock unit Reynolds numbers and a single Mach number to investigate the effects of differing ratios of inviscid and viscous temporal scales on the flow development. Two cylinder heights were studied: ‘large’ and ‘small’ protuberances based on calculated boundary-layer thicknesses. Heat-flux measurements on the shock-tube wall were performed using an ultra-fast-response temperature sensitive paint and verified by independent thermocouple measurements. High-speed schlieren provided visualizations of the inviscid flow phenomena. The unsteady shock-wave/boundary-layer interaction ahead of the cylinder resulted in high transient heat loading on the wall and caused transition to turbulence of the incoming laminar boundary layer. Once this incoming boundary layer had naturally transitioned, the region of enhanced heat flux collapsed back towards the cylinder; during this process, heat transfer in the immediate wake increased significantly. The overall heat flux upstream of the cylinder was higher for the large protuberance, whereas the downstream heat flux was generally higher for the small protuberance. In the case of the large protuberance, the viscous scaling appeared to best collapse the upstream heat-flux development for the three different unit Reynolds numbers, though the agreement downstream was less satisfactory. Neither the viscous nor the inviscid scaling appeared to adequately collapse the development for the small protuberance.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3