Thermal Evaluation of the Initial Concept 3.X Vehicle at Mach 7

Author:

Dhanagopal Abinayaa1ORCID,Strasser Nathan S.1,Andrade Angelina1,Posladek Kevin R.1,Hoffman Eugene N. A.2,Combs Christopher S.1

Affiliation:

1. Department of Mechanical Engineering, Margie and Bill Klesse College of Engineering and Integrated Design, The University of Texas at San Antonio, San Antonio, TX 78249, USA

2. Southwest Research Institute, San Antonio, TX 78238, USA

Abstract

High-speed global surface temperature distributions and heat flux measurements on the Initial Concept 3.X vehicle (IC3X) model were investigated at the UTSA Mach 7 wind tunnel, examining angles of attack of 0° and 5° at a freestream unit Reynolds number (Re) ~7 × 106 m−1. A ruthenium-based, fast-responding, temperature-sensitive paint (fast-TSP) prepared in-house was applied to a 7.1% scale model of the vehicle. Static calibration was performed to convert the intensity measurements into surface temperature values. The surface temperatures and derived heat flux fields conformed to the predicted trends, which was corroborated by Schlieren flow visualization. Notably, the average surface temperature variation was identified to range from 6 to 34 K at a 0° angle of attack and from 11 to 44 K at a 5° angle of attack, with the most pronounced gradient detected at the stagnation point. Additional measurements provided a detailed thermal assessment of the model, including estimations of the stagnation point heat flux, the convective heat transfer coefficient, and the modified Stanton number. Statistical and time series analyses of the data collected revealed the absence of prevailing unsteady phenomena, suggesting that the tested design geometry is well suited for hypersonic flight applications. These experimental outcomes not only shed light on the aerothermodynamics experienced during high-speed flight but also underscore the effectiveness of fast-TSP in capturing both quantitative and qualitative thermal data.

Funder

Air Force Office of Scientific Research, USAF

NASA

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3