Experimental Investigation of the Hypersonic Boundary-Layer Transition Induced by the Wall-Mounted Cylinder

Author:

Xiong Haoxi,Xu XiwangORCID,Yi Shihe,Nie Liang,Li Yu

Abstract

The flowfield structure, heat flux distribution, and pressure fluctuations of the wall-mounted cylinder-induced hypersonic boundary-layer transition are investigated at a 10 deg angle of attack. Experiments are conducted in a Mach 6 low-noise wind tunnel using the nanotracer-based planar laser scattering (NPLS) technique, temperature-sensitive paints (TSP), and high-frequency pressure sensors. First, the streamwise and spanwise NPLS images, TSP results, and power spectral density results of isolated cylinders at different heights show that with the increase of the cylinder height [Formula: see text], the size of the separated region and the spanwise width of the horseshoe vortex increase, and the transition moves forward. Second, the flowfield structure and wall heat flux distribution around the streamwise cylinder arrays are investigated. The results demonstrate that the downstream cylinder will destroy the development of the hairpin vortex in the upstream cylinder wake but will expand the horseshoe vortex to both sides, increasing the influence area of the cylinder.

Funder

the National Key RD Program of China

National Natural Science Foundation of China

Publisher

American Institute of Aeronautics and Astronautics (AIAA)

Subject

Condensed Matter Physics,Aerospace Engineering,Space and Planetary Science,Fluid Flow and Transfer Processes,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3