Abstract
High-speed turbulent boundary-layer separation can lead to severe wall-pressure fluctuations, often extending over a swept shock region. Having noted the shear layer’s influence within axisymmetric step flows, tests go on to experimentally assess the unsteadiness of a canonical swept separation, caused by a slanted $90^{\circ }$-step discontinuity (with varying azimuthal height) over an axisymmetric turbulent boundary layer. Results document an increase in shock pulsation frequency along the swept separation region ($\unicode[STIX]{x1D6EC}\leqslant 30^{\circ }$ sweep angles) – whereby the recirculation enables downstream feedback via the reverse flow – as the local streamwise separation length is reduced. A link between the spanwise variation in the separation shock’s low-frequency instability and the downstream mass ejection rate, as large shear-layer eddies leave the bubble, is sustained. The local entrainment-recharge dynamics of swept separation are thereby duly evaluated.
Publisher
Cambridge University Press (CUP)
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献