Strato-hyperbolic instability: a new mechanism of instability in stably stratified vortices

Author:

Suzuki Shota,Hirota Makoto,Hattori YujiORCID

Abstract

The stability of stably stratified vortices is studied by local stability analysis. Three base flows that possess hyperbolic stagnation points are considered: the two-dimensional (2-D) Taylor–Green vortices, the Stuart vortices and the Lamb–Chaplygin dipole. It is shown that the elliptic instability is stabilized by stratification; it is completely stabilized for the 2-D Taylor–Green vortices, while it remains and merges into hyperbolic instability near the boundary or the heteroclinic streamlines connecting the hyperbolic stagnation points for the Stuart vortices and the Lamb–Chaplygin dipole. More importantly, a new instability caused by hyperbolic instability near the hyperbolic stagnation points and phase shift by the internal gravity waves is found; it is named the strato-hyperbolic instability; the underlying mechanism is parametric resonance as unstable band structures appear in contours of the growth rate. A simplified model explains the mechanism and the resonance curves. The growth rate of the strato-hyperbolic instability is comparable to that of the elliptic instability for the 2-D Taylor–Green vortices, while it is smaller for the Stuart vortices and the Lamb–Chaplygin dipole. For the Lamb–Chaplygin dipole, the tripolar instability is found to merge with the strato-hyperbolic instability as stratification becomes strong. The modal stability analysis is also performed for the 2-D Taylor–Green vortices. It is shown that global modes of the strato-hyperbolic instability exist; the structure of an unstable eigenmode is in good agreement with the results obtained by local stability analysis. The strato-hyperbolic mode becomes dominant depending on the parameter values.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3