Stability of two-dimensional Taylor–Green vortices in rotating stratified fluids

Author:

Hattori YujiORCID,Hirota Makoto

Abstract

The linear stability of the two-dimensional Taylor–Green vortices, which is a spatially periodic array of vortices, in rotating stratified fluids is investigated by local and modal stability analysis. Five types of instability appear in general: the pure hyperbolic instability, the strato-hyperbolic instability, the rotational-hyperbolic instability, the centrifugal instability and the elliptic instability. The condition for each instability and the estimate of the growth rate, which are useful in interpreting numerical results, are obtained in the framework of local stability analysis. Realizability of an instability is introduced to predict whether an unstable mode corresponding to an unstable region found in the local stability analysis exists at finite Reynolds numbers. In the absence of stratification, the pure hyperbolic instability is dominant for weak rotation; it is stabilized for strong rotation. For strong anti-cyclonic rotation, the elliptic instability or the centrifugal instability becomes dominant depending on the parameter values; further stronger rotation stabilizes both instabilities. For strong cyclonic rotation, the rotational-hyperbolic instability or the elliptic instability becomes dominant, although the growth rate is smaller than the anti-cyclonic cases. Strong stratification changes the stability properties. The strato-hyperbolic instability occurs for weak rotation. The rotational-hyperbolic instability and the elliptic instability are weakened under cyclonic rotation, while the latter survives and extends the unstable range under anti-cyclonic rotation. The pure hyperbolic instability and the centrifugal instability are less affected by stratification. The mode structures of each instability are in good agreement with the corresponding solution to local stability equations, confirming the physical mechanism of the instability.

Funder

Japan Society for the Promotion of Science

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3