Abstract
We investigate the behaviour of large-scale coherent structures in a spanwise-heterogeneous turbulent boundary layer, using particle image velocimetry on multiple orthogonal planes. The statistical three-dimensionality is imposed by a herringbone riblet surface, although the key results presented here will be common to many cases of wall turbulence with embedded secondary flows in the form of mean streamwise vortices. Instantaneous velocity fields in the logarithmic layer reveal elongated low-momentum streaks located over the upwash-flow region, where their spanwise spacing is forced by the $2\unicode[STIX]{x1D6FF}$ periodicity of the herringbone pattern. These streaks largely resemble the turbulence structures that occur naturally (and randomly located) in spanwise-homogeneous smooth-/rough-wall boundary layers, although here they are directly formed by the roughness pattern. In the far outer region, the large spanwise spacing permits the streaks to aggressively meander. The mean secondary flows are the time-averaged artefact of the unsteady and spanwise asymmetric large-scale roll modes that accompany these meandering streaks. Interestingly, this meandering, or instability, gives rise to a pronounced streamwise periodicity (i.e. an alternating coherent pattern) in the spatial statistics, at wavelengths of approximately 4.5$\unicode[STIX]{x1D6FF}$. Overall, the observed behaviours largely resemble the streak-instability model that has been proposed for the buffer region, only here at a much larger scale and at a forced spanwise spacing. This observation further confirms recent observations that such features may occur at an entire hierarchy of scales throughout the turbulent boundary layer.
Publisher
Cambridge University Press (CUP)
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Cited by
44 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献