High-resolution PIV measurement over wind-generated waves

Author:

Abu Rowin Wagih,Kevin ,Bhirawa Tunggul,Lee Will Junghoon,Philip Jimmy,Marusic Ivan,Monty Jason

Abstract

AbstractThe interaction between wind and waves plays a significant role in the exchange of heat, aerosols and gases, thereby influencing our understanding of climate dynamics and air–sea interaction. Particle image velocimetry (PIV) has emerged as a valuable tool for investigating the intricate effects of small-scale waves on airflow characteristics in laboratory settings. However, previous PIV experiments have exhibited notable variability in spatial resolution, potentially affecting the accuracy of turbulence statistics, particularly in relation to small-scale waves such as capillary ripples. To systematically explore the impact of PIV spatial resolution on airflow characteristics over multi-scale wind-generated waves, we conducted high-resolution planar PIV experiments near the wave surface. We adjusted the spatial resolution of the results by modifying the spatial filter. Additionally, recognising the limitations of the high-resolution PIV system in terms of wall-normal and streamwise extent, we conducted larger field-of-view experiments to capture consecutive waveforms and achieve spatial averaging across the boundary layer. Consistent with existing literature, our findings illustrate the formation of a horizontal shear layer leading to airflow separation on the lee side of the wave, accompanied by a pronounced vorticity field and circulation region. Notably, analysis of the high-magnification dataset reveals localised airflow separation caused by small-scale capillary waves, phenomena not resolved by the large field-of-view set-up, underscoring the importance of adequate spatial resolution. Further analysis indicates that a spatial resolution larger than the size of the capillary waves leads to significant attenuation of the spanwise vorticity imposed by the small-scale waves. In this study, we also introduce a novel method relying to identify wave surfaces solely on PIV images, demonstrating its effectiveness in detecting capillary-scale waves.

Funder

Australian Research Council

University of Melbourne

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3