Scaling laws for mixing and dissipation in unforced rotating stratified turbulence

Author:

Pouquet A.ORCID,Rosenberg D.,Marino R.,Herbert C.

Abstract

We present a model for the scaling of mixing in weakly rotating stratified flows characterized by their Rossby, Froude and Reynolds numbers $Ro,Fr$, $Re$. This model is based on quasi-equipartition between kinetic and potential modes, sub-dominant vertical velocity, $w$, and lessening of the energy transfer to small scales as measured by a dissipation efficiency $\unicode[STIX]{x1D6FD}=\unicode[STIX]{x1D716}_{V}/\unicode[STIX]{x1D716}_{D}$, with $\unicode[STIX]{x1D716}_{V}$ the kinetic energy dissipation and $\unicode[STIX]{x1D716}_{D}=u_{rms}^{3}/L_{int}$ its dimensional expression, with $w,u_{rms}$ the vertical and root mean square velocities, and $L_{int}$ the integral scale. We determine the domains of validity of such laws for a large numerical study of the unforced Boussinesq equations mostly on grids of $1024^{3}$ points, with $Ro/Fr\geqslant 2.5$, and with $1600\leqslant Re\approx 5.4\times 10^{4}$; the Prandtl number is one, initial conditions are either isotropic and at large scale for the velocity and zero for the temperature $\unicode[STIX]{x1D703}$, or in geostrophic balance. Three regimes in Froude number, as for stratified flows, are observed: dominant waves, eddy–wave interactions and strong turbulence. A wave–turbulence balance for the transfer time $\unicode[STIX]{x1D70F}_{tr}=N\unicode[STIX]{x1D70F}_{NL}^{2}$, with $\unicode[STIX]{x1D70F}_{NL}=L_{int}/u_{rms}$ the turnover time and $N$ the Brunt–Väisälä frequency, leads to $\unicode[STIX]{x1D6FD}$ growing linearly with $Fr$ in the intermediate regime, with a saturation at $\unicode[STIX]{x1D6FD}\approx 0.3$ or more, depending on initial conditions for larger Froude numbers. The Ellison scale is also found to scale linearly with $Fr$. The flux Richardson number $R_{f}=B_{f}/[B_{f}+\unicode[STIX]{x1D716}_{V}]$, with $B_{f}=N\langle w\unicode[STIX]{x1D703}\rangle$ the buoyancy flux, transitions for approximately the same parameter values as for $\unicode[STIX]{x1D6FD}$. These regimes for the present study are delimited by ${\mathcal{R}}_{B}=ReFr^{2}\approx 2$ and $R_{B}\approx 200$. With $\unicode[STIX]{x1D6E4}_{f}=R_{f}/[1-R_{f}]$ the mixing efficiency, putting together the three relationships of the model allows for the prediction of the scaling $\unicode[STIX]{x1D6E4}_{f}\sim Fr^{-2}\sim {\mathcal{R}}_{B}^{-1}$ in the low and intermediate regimes for high $Re$, whereas for higher Froude numbers, $\unicode[STIX]{x1D6E4}_{f}\sim {\mathcal{R}}_{B}^{-1/2}$, a scaling already found in observations: as turbulence strengthens, $\unicode[STIX]{x1D6FD}\sim 1$, $w\approx u_{rms}$, and smaller buoyancy fluxes together correspond to a decoupling of velocity and temperature fluctuations, the latter becoming passive.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference83 articles.

1. Forced stratified turbulence: Successive transitions with reynolds number;Laval;Phys. Rev. E,2003

2. Dynamics of stratified turbulence decaying from a high buoyancy Reynolds number

3. The Modification of Bottom Boundary Layer Turbulence and Mixing by Internal Waves Shoaling on a Barrier Reef

4. Oks, D. , Mininni, P. D.  & Pouquet, A. 2018 Generation of turbulence through frontogenesis in sheared stratified flows. Phys. Fluids (submitted) arXiv:1706.10287v2.

5. Dynamics of turbulence strongly influenced by buoyancy

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3