The onset and saturation of the Faraday instability in miscible fluids in a rotating environment

Author:

Singh NarinderORCID,Pal AnikeshORCID

Abstract

We investigate the influence of rotation on the onset and saturation of the Faraday instability in a vertically oscillating two-layer miscible fluid using a theoretical model and direct numerical simulations (DNS). Our analytical approach utilizes Floquet analysis to solve a set of the Mathieu equations obtained from the linear stability analysis. The solution of the Mathieu equations comprises stable and harmonic, and subharmonic unstable regions in a three-dimensional stability diagram. We find that the Coriolis force delays the onset of the subharmonic instability responsible for the growth of the mixing zone size at lower forcing amplitudes. However, at higher forcing amplitudes, the flow is energetic enough to mitigate the instability delaying effect of rotation, and the evolution of the mixing zone size is similar in both rotating and non-rotating environments. These results are corroborated by DNS at different Coriolis frequencies and forcing amplitudes. We also observe that for$(\,f/\omega )^2<0.25$, where$f$is the Coriolis frequency, and$\omega$is the forcing frequency, the instability and the turbulent mixing zone size-$L$saturates. When$(\,f/\omega )^2\geq 0.25$, the turbulent mixing zone size-$L$never saturates and continues to grow.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3