Multi-scale reconstruction of turbulent rotating flows with proper orthogonal decomposition and generative adversarial networks

Author:

Li TianyiORCID,Buzzicotti Michele,Biferale LucaORCID,Bonaccorso Fabio,Chen Shiyi,Wan MinpingORCID

Abstract

Data reconstruction of rotating turbulent snapshots is investigated utilizing data-driven tools. This problem is crucial for numerous geophysical applications and fundamental aspects, given the concurrent effects of direct and inverse energy cascades. Additionally, benchmarking of various reconstruction techniques is essential to assess the trade-off between quantitative supremacy, implementation complexity and explicability. In this study, we use linear and nonlinear tools based on the proper orthogonal decomposition (POD) and generative adversarial network (GAN) for reconstructing rotating turbulence snapshots with spatial damages (inpainting). We focus on accurately reproducing both statistical properties and instantaneous velocity fields. Different gap sizes and gap geometries are investigated in order to assess the importance of coherency and multi-scale properties of the missing information. Surprisingly enough, concerning point-wise reconstruction, the nonlinear GAN does not outperform one of the linear POD techniques. On the other hand, the supremacy of the GAN approach is shown when the statistical multi-scale properties are compared. Similarly, extreme events in the gap region are better predicted when using GAN. The balance between point-wise error and statistical properties is controlled by the adversarial ratio, which determines the relative importance of the generator and the discriminator in the GAN training.

Funder

Guangdong Provincial Department of Science and Technology

H2020 European Research Council

National Natural Science Foundation of China

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3