Generating the Microstructure of Al-Si Cast Alloys Using Machine Learning

Author:

Hwang In-Kyu,Lee Hyun-Ji,Jeong Sang-Jun,Cho In-Sung,Kim Hee-Soo

Abstract

In this study, we constructed a deep convolutional generative adversarial network (DCGAN) to generate the microstructural images that imitate the real microstructures of binary Al-Si cast alloys. We prepared four combinations of alloys, Al-6wt%Si, Al-9wt%Si, Al-12wt%Si and Al-15wt%Si for machine learning. DCGAN is composed of a generator and a discriminator. The discriminator has a typical convolutional neural network (CNN), and the generator has an inverse shaped CNN. The fake images generated using DCGAN were similar to real microstructural images. However, they showed some strange morphology, including dendrites without directionality, and deformed Si crystals. Verification with Inception V3 revealed that the fake images generated using DCGAN were well classified into the target categories. Even the visually imperfect images in the initial training iterations showed high similarity to the target. It seems that the imperfect images had enough microstructural characteristics to satisfy the classification, even though human cannot recognize the images. Cross validation was carried out using real, fake and other test images. When the training dataset had the fake images only, the real and test images showed high similarities to the target categories. When the training dataset contained both the real and fake images, the similarity at the target categories were high enough to meet the right answers. We concluded that the DCGAN developed for microstructural images in this study is highly useful for data augmentation for rare microstructures.

Publisher

The Korean Institute of Metals and Materials

Subject

Metals and Alloys,Surfaces, Coatings and Films,Modelling and Simulation,Electronic, Optical and Magnetic Materials

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3