Author:
Hwang In-Kyu,Lee Hyun-Ji,Jeong Sang-Jun,Cho In-Sung,Kim Hee-Soo
Abstract
In this study, we constructed a deep convolutional generative adversarial network (DCGAN) to generate the microstructural images that imitate the real microstructures of binary Al-Si cast alloys. We prepared four combinations of alloys, Al-6wt%Si, Al-9wt%Si, Al-12wt%Si and Al-15wt%Si for machine learning. DCGAN is composed of a generator and a discriminator. The discriminator has a typical convolutional neural network (CNN), and the generator has an inverse shaped CNN. The fake images generated using DCGAN were similar to real microstructural images. However, they showed some strange morphology, including dendrites without directionality, and deformed Si crystals. Verification with Inception V3 revealed that the fake images generated using DCGAN were well classified into the target categories. Even the visually imperfect images in the initial training iterations showed high similarity to the target. It seems that the imperfect images had enough microstructural characteristics to satisfy the classification, even though human cannot recognize the images. Cross validation was carried out using real, fake and other test images. When the training dataset had the fake images only, the real and test images showed high similarities to the target categories. When the training dataset contained both the real and fake images, the similarity at the target categories were high enough to meet the right answers. We concluded that the DCGAN developed for microstructural images in this study is highly useful for data augmentation for rare microstructures.
Publisher
The Korean Institute of Metals and Materials
Subject
Metals and Alloys,Surfaces, Coatings and Films,Modelling and Simulation,Electronic, Optical and Magnetic Materials
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献