A Comparative Study of the Accuracy of Machine Learning Models for Predicting Tempered Martensite Hardness According to Model Complexity

Author:

Jeon Junhyub,Kim DongEung,Hong Jun-Ho,Kim Hwi-Jun,Lee Seok-Jae

Abstract

We investigated various numerical methods including a physical-based empirical equation, linear regression, shallow neural network, and deep learning approaches, to compare their accuracy for predicting the hardness of tempered martensite in low alloy steels. The physical-based empirical equation, which had been previously proposed with experimental data, was labelled and used in the present study. While it had a smaller number of coefficients, the prediction accuracy of the physical-based empirical equation was almost similar to that of the regression model based on the response surface method. The prediction accuracy of the machine learning models clearly improved as the number of layers increased and became more complicated in structure before the model began to overfit. The key point we found was that a single layered neural network model with optimized hyperparameters resulted in similar or better hardness prediction performance compared to deep learning models with a more complex architecture. We also analyzed 18 research papers from the literature which used neural network models to predict the hardness of steels. Only two recent papers adopted a convolutional neural network, as a kind of deep learning model, in a new attempt to predict hardness. The other 16 papers from 1998 to 2021 commonly chose shallow neural network models because a more complicated model is less effective than a simple model for regression problems with well-labeled experimental data in materials science and engineering.

Funder

Korea Institute of Industrial Technology

Publisher

The Korean Institute of Metals and Materials

Subject

Metals and Alloys,Surfaces, Coatings and Films,Modeling and Simulation,Electronic, Optical and Magnetic Materials

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3