Abstract
The exploitation of petroleum oil generates a considerable amount of “produced water or petroleum waste effluent (PWE)” that is contaminated with polycyclic aromatic hydrocarbons (PAHs), including Benzo[a]pyrene (BaP). PWE is characterised by its high salinity, which can be as high as 30% NaCl, thus the exploitation of biodegradation to remove PAHs necessitates the use of active halophilic microbes. The strain 10SBZ1A was isolated from oil contaminated soils, by enrichment experiment in medium containing 10% NaCl (w/v). Homology analyses of 16S rRNA sequences identified 10SBZ1A as a Staphylococcus haemoliticus species, based on 99.99% homology (NCBI, accession number GI: MN388897). The strain could grow in the presence of 4–200 μmol l-1 of BaP as the sole source of carbon, with a doubling time of 17–42 h. This strain optimum conditions for growth were 37 oC, 10% NaCl (w/v) and pH 7, and under these conditions, it degraded BaP at a rate of 0.8 μmol l-1 per day. The strain 10SBZ1A actively degraded PAHs of lower molecular weights than that of BaP, including pyrene, phenanthrene, anthracene. This strain was also capable of removing 80% of BaP in the context of soil spiked with BaP (10 μmol l-1 in 100 g of soil) within 30 days. Finally, a metabolic pathway of BaP was proposed, based on the identified metabolites using liquid chromatography-high resolution tandem mass spectrometry. To the best of our knowledge, this is the first report of a halophilic BaP degrading bacterial strain at salinity > 5% NaCl.
Funder
King Fahd University of Petroleum and Minerals
US Department of Agriculture
Publisher
Public Library of Science (PLoS)
Reference55 articles.
1. Review of technologies for oil and gas produced water treatment;A Fakhru’l-Razi;Journal of Hazardous Materials,2009
2. Produced water treatment technologies.;ET Igunnu;Int J Low-Carbon Technol,2014
3. Recent studies in microbial degradation of petroleum hydrocarbons in hypersaline environments;BZ Fathepure;Frontiers in Microbiology,2014
4. Impacts, recovery rates, and treatment options for spilled oil in marshes;J Michel;Mar Pollut Bull,2014
5. Response of salt marshes to oiling from the Deepwater Horizon spill: Implications for plant growth, soil surface-erosion, and shoreline stability;Q Lin;Sci Total Environ,2016
Cited by
30 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献