Pseudomonas and Pseudarthrobacter are the key players in synergistic phenanthrene biodegradation at low temperatures

Author:

Naloka Kallayanee,Kuntaveesuk Aunchisa,Muangchinda Chanokporn,Chavanich Suchana,Viyakarn Voranop,Chen Bo,Pinyakong Onruthai

Abstract

AbstractHydrocarbon contamination, including contamination with polycyclic aromatic hydrocarbons (PAHs), is a major concern in Antarctica due to the toxicity, recalcitrance and persistence of these compounds. Under the Antarctic Treaty, nonindigenous species are not permitted for use in bioremediation at polluted sites in the Antarctic region. In this study, three bacterial consortia (C13, C15, and C23) were isolated from Antarctic soils for phenanthrene degradation. All isolated bacterial consortia demonstrated phenanthrene degradation percentages ranging from 45 to 85% for 50 mg/L phenanthrene at 15 ℃ within 5 days. Furthermore, consortium C13 exhibited efficient phenanthrene degradation potential across a wide range of environmental conditions, including different temperature (4–30 ℃) and water availability (without polyethylene glycol (PEG) 6000 or 30% PEG 6000 (w/v)) conditions. Sequencing analysis of 16S rRNA genes revealed that Pseudomonas and Pseudarthrobacter were the dominant genera in the phenanthrene-degrading consortia. Moreover, six cultivable strains were isolated from these consortia, comprising four strains of Pseudomonas, one strain of Pseudarthrobacter, and one strain of Paeniglutamicibacter. These isolated strains exhibited the ability to degrade 50 mg/L phenanthrene, with degradation percentages ranging from 4 to 22% at 15 ℃ within 15 days. Additionally, the constructed consortia containing Pseudomonas spp. and Pseudarthrobacter sp. exhibited more effective phenanthrene degradation (43–52%) than did the individual strains. These results provide evidence that Pseudomonas and Pseudarthrobacter can be potential candidates for synergistic phenanthrene degradation at low temperatures. Overall, our study offers valuable information for the bioremediation of PAH contamination in Antarctic environments.

Funder

The Second Century Fund (C2F), Chulalongkorn University

The Information Technology Foundation under the Initiative of Her Royal Highness Princess Maha Chakri Sirindhorn

The Polar Research Project under the Initiatives of Her Royal Highness Princess Maha Chakri Sirindhorn

The Chinese Arctic and Antarctic Administration; and the Polar Research Institute of China & Chinese National Antarctic Research Expedition

The National Science and Technology Development Agency

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3