ReportAGE: Automatically extracting the exact age of Twitter users based on self-reports in tweets

Author:

Klein Ari Z.ORCID,Magge Arjun,Gonzalez-Hernandez Graciela

Abstract

Advancing the utility of social media data for research applications requires methods for automatically detecting demographic information about social media study populations, including users’ age. The objective of this study was to develop and evaluate a method that automatically identifies the exact age of users based on self-reports in their tweets. Our end-to-end automatic natural language processing (NLP) pipeline, ReportAGE, includes query patterns to retrieve tweets that potentially mention an age, a classifier to distinguish retrieved tweets that self-report the user’s exact age (“age” tweets) and those that do not (“no age” tweets), and rule-based extraction to identify the age. To develop and evaluate ReportAGE, we manually annotated 11,000 tweets that matched the query patterns. Based on 1000 tweets that were annotated by all five annotators, inter-annotator agreement (Fleiss’ kappa) was 0.80 for distinguishing “age” and “no age” tweets, and 0.95 for identifying the exact age among the “age” tweets on which the annotators agreed. A deep neural network classifier, based on a RoBERTa-Large pretrained transformer model, achieved the highest F1-score of 0.914 (precision = 0.905, recall = 0.942) for the “age” class. When the age extraction was evaluated using the classifier’s predictions, it achieved an F1-score of 0.855 (precision = 0.805, recall = 0.914) for the “age” class. When it was evaluated directly on the held-out test set, it achieved an F1-score of 0.931 (precision = 0.873, recall = 0.998) for the “age” class. We deployed ReportAGE on a collection of more than 1.2 billion tweets, posted by 245,927 users, and predicted ages for 132,637 (54%) of them. Scaling the detection of exact age to this large number of users can advance the utility of social media data for research applications that do not align with the predefined age groupings of extant binary or multi-class classification approaches.

Funder

U.S. National Library of Medicine

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3