Author:
Nguyen Dong,Gravel Rilana,Trieschnigg Dolf,Meder Theo
Abstract
In this paper we focus on the connection between age and language use, exploring age prediction of Twitter users based on their tweets. We discuss the construction of a fine-grained annotation effort to assign ages and life stages to Twitter users. Using this dataset, we explore age prediction in three different ways: classifying users into age categories, by life stages, and predicting their exact age. We find that an automatic system achieves better performance than humans on these tasks and that both humans and the automatic systems have difficulties predicting the age of older people. Moreover, we present a detailed analysis of variables that change with age. We find strong patterns of change, and that most changes occur at young ages.
Publisher
Association for the Advancement of Artificial Intelligence (AAAI)
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献