Artificial intelligence–based technology for semi-automated segmentation of rectal cancer using high-resolution MRI

Author:

Hamabe AtsushiORCID,Ishii Masayuki,Kamoda Rena,Sasuga Saeko,Okuya Koichi,Okita Kenji,Akizuki Emi,Sato Yu,Miura Ryo,Onodera Koichi,Hatakenaka Masamitsu,Takemasa Ichiro

Abstract

Aim Although MRI has a substantial role in directing treatment decisions for locally advanced rectal cancer, precise interpretation of the findings is not necessarily available at every institution. In this study, we aimed to develop artificial intelligence-based software for the segmentation of rectal cancer that can be used for staging to optimize treatment strategy and for preoperative surgical simulation. Method Images from a total of 201 patients who underwent preoperative MRI were analyzed for training data. The resected specimen was processed in a circular shape in 103 cases. Using these datasets, ground-truth labels were prepared by annotating MR images with ground-truth segmentation labels of tumor area based on pathologically confirmed lesions. In addition, the areas of rectum and mesorectum were also labeled. An automatic segmentation algorithm was developed using a U-net deep neural network. Results The developed algorithm could estimate the area of the tumor, rectum, and mesorectum. The Dice similarity coefficients between manual and automatic segmentation were 0.727, 0.930, and 0.917 for tumor, rectum, and mesorectum, respectively. The T2/T3 diagnostic sensitivity, specificity, and overall accuracy were 0.773, 0.768, and 0.771, respectively. Conclusion This algorithm can provide objective analysis of MR images at any institution, and aid risk stratification in rectal cancer and the tailoring of individual treatments. Moreover, it can be used for surgical simulations.

Funder

Fujifilm Corporation

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3