Crack control optimization of basement concrete structures using the Mask-RCNN and temperature effect analysis

Author:

Wu Shouyan,Fu FengORCID

Abstract

In order to enhance the mitigation of crack occurrence and propagation within basement concrete structures, this research endeavors to propose an optimization methodology grounded in the Mask Region-based Convolutional Neural Network (Mask-RCNN) and an analysis of temperature effects. Initially, the Mask-RCNN algorithm is employed to perform image segmentation of the basement concrete structure, facilitating the precise identification of crack locations and shapes within the structure. Subsequently, the finite element analysis method is harnessed to simulate the structural stress and deformation in response to temperature variations. An optimization algorithm is introduced to adjust geometric parameters and material properties using insights from the temperature effect analysis. This algorithm aims to minimize stress concentration and deformation within the structure, thus diminishing the incidence and proliferation of cracks. In order to assess the efficacy of the optimization approach, an authentic basement concrete structure is selected for scrutiny, and the structure is monitored in real-time through the installation of strain gauges and monitoring equipment. These instruments track structural stress and deformation under diverse temperature conditions, and the evolution of cracks is meticulously documented. The outcomes demonstrate that by adjusting the structural geometric parameters and material properties, the crack density experiences a notable reduction of 60.22%. Moreover, the average crack length and width witness reductions of 40.24% and 35.43%, respectively, thereby corroborating the efficacy of the optimization method. Furthermore, an assessment of stress concentration and deformation within the structure is conducted. Through the optimization process, the maximum stress concentration in the structure diminishes by 25.22%, while the maximum deformation is curtailed by 30.32%. These results signify a substantial enhancement in structural stability. It is evident that the optimization algorithm exhibits robustness and stability in the context of crack control, consistently delivering favorable outcomes across diverse parameter configurations.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference43 articles.

1. A Review of Detection Technologies for Underwater Cracks on Concrete Dam Surfaces;D Chen;Applied Sciences,2023

2. Vision and deep learning-based algorithms to detect and quantify cracks on concrete surfaces from UAV videos;S Bhowmick;Sensors,2020

3. Development of deep learning model for the recognition of cracks on concrete surfaces;T T Le;Applied computational intelligence and soft computing,2021

4. Automatic detection of cracks on concrete surfaces in the presence of shadows;P Palevičius;Sensors,2022

5. Corrosion State Of Reinforced Concrete Structures;G S Gayradjonovich;The American Journal of Engineering and Technology,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3