Vision and Deep Learning-Based Algorithms to Detect and Quantify Cracks on Concrete Surfaces from UAV Videos

Author:

Bhowmick Sutanu,Nagarajaiah SatishORCID,Veeraraghavan AshokORCID

Abstract

Immediate assessment of structural integrity of important civil infrastructures, like bridges, hospitals, or dams, is of utmost importance after natural disasters. Currently, inspection is performed manually by engineers who look for local damages and their extent on significant locations of the structure to understand its implication on its global stability. However, the whole process is time-consuming and prone to human errors. Due to their size and extent, some regions of civil structures are hard to gain access for manual inspection. In such situations, a vision-based system of Unmanned Aerial Vehicles (UAVs) programmed with Artificial Intelligence algorithms may be an effective alternative to carry out a health assessment of civil infrastructures in a timely manner. This paper proposes a framework of achieving the above-mentioned goal using computer vision and deep learning algorithms for detection of cracks on the concrete surface from its image by carrying out image segmentation of pixels, i.e., classification of pixels in an image of the concrete surface and whether it belongs to cracks or not. The image segmentation or dense pixel level classification is carried out using a deep neural network architecture named U-Net. Further, morphological operations on the segmented images result in dense measurements of crack geometry, like length, width, area, and crack orientation for individual cracks present in the image. The efficacy and robustness of the proposed method as a viable real-life application was validated by carrying out a laboratory experiment of a four-point bending test on an 8-foot-long concrete beam of which the video is recorded using a camera mounted on a UAV-based, as well as a still ground-based, video camera. Detection, quantification, and localization of damage on a civil infrastructure using the proposed framework can directly be used in the prognosis of the structure’s ability to withstand service loads.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 75 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3