Recent Progress of Deep Learning Methods for Health Monitoring of Lithium-Ion Batteries

Author:

Madani Seyed Saeed1ORCID,Ziebert Carlos1ORCID,Vahdatkhah Parisa2ORCID,Sadrnezhaad Sayed Khatiboleslam3

Affiliation:

1. Institute of Applied Materials-Applied Materials Physics, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany

2. Department of Chemistry, McGill University, Montreal, QC H3A 0B8, Canada

3. Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

Abstract

In recent years, the rapid evolution of transportation electrification has been propelled by the widespread adoption of lithium-ion batteries (LIBs) as the primary energy storage solution. The critical need to ensure the safe and efficient operation of these LIBs has positioned battery management systems (BMS) as pivotal components in this landscape. Among the various BMS functions, state and temperature monitoring emerge as paramount for intelligent LIB management. This review focuses on two key aspects of LIB health management: the accurate prediction of the state of health (SOH) and the estimation of remaining useful life (RUL). Achieving precise SOH predictions not only extends the lifespan of LIBs but also offers invaluable insights for optimizing battery usage. Additionally, accurate RUL estimation is essential for efficient battery management and state estimation, especially as the demand for electric vehicles continues to surge. The review highlights the significance of machine learning (ML) techniques in enhancing LIB state predictions while simultaneously reducing computational complexity. By delving into the current state of research in this field, the review aims to elucidate promising future avenues for leveraging ML in the context of LIBs. Notably, it underscores the increasing necessity for advanced RUL prediction techniques and their role in addressing the challenges associated with the burgeoning demand for electric vehicles. This comprehensive review identifies existing challenges and proposes a structured framework to overcome these obstacles, emphasizing the development of machine-learning applications tailored specifically for rechargeable LIBs. The integration of artificial intelligence (AI) technologies in this endeavor is pivotal, as researchers aspire to expedite advancements in battery performance and overcome present limitations associated with LIBs. In adopting a symmetrical approach, ML harmonizes with battery management, contributing significantly to the sustainable progress of transportation electrification. This study provides a concise overview of the literature, offering insights into the current state, future prospects, and challenges in utilizing ML techniques for lithium-ion battery health monitoring.

Funder

Helmholtz Association

KIT-Publication Fund of the Karlsruhe Institute of Technology

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3