Permeability characteristics and structural evolution of compacted loess under different dry densities and wetting-drying cycles

Author:

Yuan Kang-ze,Ni Wan-kuiORCID,Lü Xiang-fei,Wang Xi-jun

Abstract

Permeability characteristics of compacted loess is always an important topic in soil mechanics and geotechnical engineering. This study explored the permeability characteristics of compacted loess under different dry densities and wetting-drying cycles, and found that as the dry density increases, the compacted loess surface became denser, the saturation permeability coefficient and saturation infiltration rate decreased. However, the wetting-drying cycle presented the opposite result. Meanwhile, the evolution of the microstructure was investigated by Scanning Electron Microscope (SEM) and Nuclear Magnetic Resonance (NMR) to explain the change of its permeability characteristics. The size of compacted loess aggregates was quantitatively analyzed by Image-Pro Plus (IPP) software. It showed that the size of compacted loess aggregates for different dry densities were concentrated from 10–100 μm, occupying 65.0%, 58.19%, and 51.64% of the total aggregates area respectively. And the interesting finding was that the area occupied by 10–50 μm aggregates remained basically unchanged with the number of wetting-drying cycles increasing. Therefore, the size of 10–50 μm aggregates represented the transition zone of compacted loess. NMR analyses revealed that with increasing dry density, the volume of macropores in the compacted loess rapidly decreased, the volume of mesopores and small pores increased. Meanwhile, the change in micropores was relatively small. The pore volume of the compacted loess after three wetting-drying cycles increased by 8.56%, 8.61%, and 6.15%, respectively. The proportion of macropores in the total pore volume shows the most drastic change. Variations in aggregate size and connection relationships made it easier to form overhead structures between aggregates, and the increased of macropore volume will form more water channels. Therefore, the change in permeability characteristics of compacted loess is determined by aggregate size, loess surface morphology, and the total pore volume occupied by macropores.

Funder

Postdoctoral Research Foundation of China

Shaanxi Province Postdoctoral Science Foundation

Innovative Research Group Project of the National Natural Science Foundation of China

the key research and development program of Shaanxi Province

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference26 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3