Micromechanical study of loess permeability and seepage erosion based on microstructure functional basic unit and seepage simulation in pore domain

Author:

Wang Weiping1,Li Xi-An2,Dong Haoyang3,Chai Hao3,Yang Wenfu4

Affiliation:

1. Chang'an University School of Geological and Surveying and Mapping Engineering, 554969, Xi‘an, Shaanxi, China;

2. Chang'an University, 66350, School of Geological Engineering and Geomatics, Xi'an, Shaanxi, China;

3. Chang'an University School of Geological and Surveying and Mapping Engineering, 554969, Xi'an, Shaanxi, China;

4. Coal Geological Geophysical Exploration Surveying and Mapping Institute of Shanxi Province, Jinzhong, Shanxi , China;

Abstract

The vast majority of geological disasters in loess-covered areas are caused by seepage erosion in loess. Therefore, this paper focuses on the microscopic mechanism of loess seepage erosion, and constructs a loess microstructure model based on particle "core+coat". On this basis, the SEM photos are imported into COMSOL to simulate the micro-scale seepage in the pore domain. Through the actual permeability test, combined with the micro-quantitative information obtained by IPP(Image-pro-plus) and Arcgis, the micro-factors affecting loess permeability are quantitatively analyzed by grey relational analysis. The results show that the dry density affects the porosity of loess and ultimately determines the permeability of loess. Different pore types and proportions lead to different seepage erosion of loess. The erosion process mainly occurs at the junction of pores. The sudden increase of velocity, pressure drop and maximum shear rate at the throat indicate that this area is the main action area of loess seepage erosion. The research results of this paper provide an important theoretical basis for the research and prevention of geological disasters and engineering diseases related to seepage deformation and failure in loess area.

Publisher

Canadian Science Publishing

Subject

Civil and Structural Engineering,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3