Environmental impacts on diapause and survival of the alfalfa leafcutting bee, Megachile rotundata

Author:

Wilson Elisabeth S.ORCID,Murphy Claire E.ORCID,Wong Covey,Rinehart Joseph P.,Yocum George D.,Bowsher Julia H.ORCID

Abstract

Megachile rotundata exhibits a facultative prepupal diapause but the cues regulating diapause initiation are not well understood. Possible cues include daylength and temperature. Megachile rotundata females experience changing daylengths over the nesting season that may influence diapause incidence in their offspring through a maternal effect. Juvenile M. rotundata spend their developmental period confined in a nesting cavity, potentially subjected to stressful temperatures that may affect diapause incidence and survival. To estimate the impact of daylength and nest cavity temperature on offspring diapause, we designed a 3D printed box with iButtons that measured nest cavity temperature. We observed nest building throughout the season, monitored nest cavity temperature, and followed offspring through development to measure diapause incidence and mortality. We found that daylength was a cue for diapause, and nest cavity temperature did not influence diapause incidence. Eggs laid during long days had a lower probability of diapause. Siblings tended to have the same diapause status, explaining a lot of the remaining variance in diapause incidence. Some females established nests that contained both diapausing and nondiapausing individuals, which were distributed throughout the nest. Nest cavities reached stressful temperatures, which decreased survival. Mortality was significantly higher in nondiapausing bees and the individuals that were laid first in the nest. In conclusion, we demonstrate a maternal effect for diapause that is mediated by daylength and is independent of nest box temperature.

Funder

National Science Foundation

Agricultural Research Service

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3