Maternal body condition and season influence RNA deposition in the oocytes of alfalfa leafcutting bees (Megachile rotundata)

Author:

Hagadorn Mallory A.,Hunter Frances K.,DeLory Tim,Johnson Makenna M.,Pitts-Singer Theresa L.,Kapheim Karen M.

Abstract

Maternal effects are an important source of phenotypic variance, whereby females influence offspring developmental trajectory beyond direct genetic contributions, often in response to changing environmental conditions. However, relatively little is known about the mechanisms by which maternal experience is translated into molecular signals that shape offspring development. One such signal may be maternal RNA transcripts (mRNAs and miRNAs) deposited into maturing oocytes. These regulate the earliest stages of development of all animals, but are understudied in most insects. Here we investigated the effects of female internal (body condition) and external (time of season) environmental conditions on maternal RNA in the maturing oocytes and 24-h-old eggs (24-h eggs) of alfalfa leafcutting bees. Using gene expression and WGCNA analysis, we found that females adjust the quantity of mRNAs related to protein phosphorylation, transcriptional regulation, and nuclease activity deposited into maturing oocytes in response to both poor body condition and shorter day lengths that accompany the late season. However, the magnitude of these changes was higher for time of season. Females also adjusted miRNA deposition in response to seasonal changes, but not body condition. We did not observe significant changes in maternal RNAs in response to either body condition or time of season in 24-h eggs, which were past the maternal-to-zygotic transition. Our results suggest that females adjust the RNA transcripts they provide for offspring to regulate development in response to both internal and external environmental cues. Variation in maternal RNAs may, therefore, be important for regulating offspring phenotype in response to environmental change.

Funder

National Institute of Food and Agriculture

Utah Agricultural Experiment Station

National Science Foundation

Publisher

Frontiers Media SA

Subject

Genetics (clinical),Genetics,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3