Average semivariance yields accurate estimates of the fraction of marker-associated genetic variance and heritability in complex trait analyses

Author:

Feldmann Mitchell J.ORCID,Piepho Hans-Peter,Bridges William C.,Knapp Steven J.ORCID

Abstract

The development of genome-informed methods for identifying quantitative trait loci (QTL) and studying the genetic basis of quantitative variation in natural and experimental populations has been driven by advances in high-throughput genotyping. For many complex traits, the underlying genetic variation is caused by the segregation of one or more ‘large-effect’ loci, in addition to an unknown number of loci with effects below the threshold of statistical detection. The large-effect loci segregating in populations are often necessary but not sufficient for predicting quantitative phenotypes. They are, nevertheless, important enough to warrant deeper study and direct modelling in genomic prediction problems. We explored the accuracy of statistical methods for estimating the fraction of marker-associated genetic variance (p) and heritability (H M 2) for large-effect loci underlying complex phenotypes. We found that commonly used statistical methods overestimate p and H M 2. The source of the upward bias was traced to inequalities between the expected values of variance components in the numerators and denominators of these parameters. Algebraic solutions for bias-correcting estimates of p and H M 2 were found that only depend on the degrees of freedom and are constant for a given study design. We discovered that average semivariance methods, which have heretofore not been used in complex trait analyses, yielded unbiased estimates of p and H M 2, in addition to best linear unbiased predictors of the additive and dominance effects of the underlying loci. The cryptic bias problem described here is unrelated to selection bias, although both cause the overestimation of p and H M 2. The solutions we described are predicted to more accurately describe the contributions of large-effect loci to the genetic variation underlying complex traits of medical, biological, and agricultural importance.

Funder

National Institute of Food and Agriculture

California Strawberry Commission

University of California

Deutsche Forschungsgemeinschaft

Publisher

Public Library of Science (PLoS)

Subject

Cancer Research,Genetics (clinical),Genetics,Molecular Biology,Ecology, Evolution, Behavior and Systematics

Reference124 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3