Complex traits and candidate genes: estimation of genetic variance components across multiple genetic architectures

Author:

Feldmann Mitchell J1,Covarrubias-Pazaran Giovanny2,Piepho Hans-Peter3

Affiliation:

1. Department of Plant Sciences, University of California Davis , One Shields Ave, Davis, CA 95616 , USA

2. International Maize and Wheat Improvement Center (CIMMYT) , Carretera México-Veracruz, El Batán, 56130 Texcoco, Edo. de México , México

3. Biostatistics Unit, Institute of Crop Science, University of Hohenheim , Stuttgart 70599 , Germany

Abstract

AbstractLarge-effect loci—those statistically significant loci discovered by genome-wide association studies or linkage mapping—associated with key traits segregate amidst a background of minor, often undetectable, genetic effects in wild and domesticated plants and animals. Accurately attributing mean differences and variance explained to the correct components in the linear mixed model analysis is vital for selecting superior progeny and parents in plant and animal breeding, gene therapy, and medical genetics in humans. Marker-assisted prediction and its successor, genomic prediction, have many advantages for selecting superior individuals and understanding disease risk. However, these two approaches are less often integrated to study complex traits with different genetic architectures. This simulation study demonstrates that the average semivariance can be applied to models incorporating Mendelian, oligogenic, and polygenic terms simultaneously and yields accurate estimates of the variance explained for all relevant variables. Our previous research focused on large-effect loci and polygenic variance separately. This work aims to synthesize and expand the average semivariance framework to various genetic architectures and the corresponding mixed models. This framework independently accounts for the effects of large-effect loci and the polygenic genetic background and is universally applicable to genetics studies in humans, plants, animals, and microbes.

Funder

United States Department of Agriculture

National Institute of Food and Agriculture

California Strawberry Commission

University of California, Davis

German Research Foundation

Publisher

Oxford University Press (OUP)

Subject

Genetics (clinical),Genetics,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3