A recurrent neural network model of prefrontal brain activity during a working memory task

Author:

Piwek Emilia P.ORCID,Stokes Mark G.,Summerfield Christopher

Abstract

When multiple items are held in short-term memory, cues that retrospectively prioritise one item over another (retro-cues) can facilitate subsequent recall. However, the neural and computational underpinnings of this effect are poorly understood. One recent study recorded neural signals in the macaque lateral prefrontal cortex (LPFC) during a retro-cueing task, contrasting delay-period activity before (pre-cue) and after (post-cue) retrocue onset. They reported that in the pre-cue delay, the individual stimuli were maintained in independent subspaces of neural population activity, whereas in the post-cue delay, the prioritised items were rotated into a common subspace, potentially allowing a common readout mechanism. To understand how such representational transitions can be learnt through error minimisation, we trained recurrent neural networks (RNNs) with supervision to perform an equivalent cued-recall task. RNNs were presented with two inputs denoting conjunctive colour-location stimuli, followed by a pre-cue memory delay, a location retrocue, and a post-cue delay. We found that the orthogonal-to-parallel geometry transformation observed in the macaque LPFC emerged naturally in RNNs trained to perform the task. Interestingly, the parallel geometry only developed when the cued information was required to be maintained in short-term memory for several cycles before readout, suggesting that it might confer robustness during maintenance. We extend these findings by analysing the learning dynamics and connectivity patterns of the RNNs, as well as the behaviour of models trained with probabilistic cues, allowing us to make predictions for future studies. Overall, our findings are consistent with recent theoretical accounts which propose that retrocues transform the prioritised memory items into a prospective, action-oriented format.

Funder

H2020 European Research Council

Human Brain Project

James S. McDonnell Foundation

Economic and Social Research Council

Publisher

Public Library of Science (PLoS)

Subject

Computational Theory and Mathematics,Cellular and Molecular Neuroscience,Genetics,Molecular Biology,Ecology,Modeling and Simulation,Ecology, Evolution, Behavior and Systematics

Reference38 articles.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3