Neural dynamics of visual working memory representation during sensory distraction

Author:

Degutis Jonas Karolis123ORCID,Weber Simon14ORCID,Soch Joram1567ORCID,Haynes John-Dylan12348ORCID

Affiliation:

1. Bernstein Center for Computational Neuroscience Berlin and Berlin Center for Advanced Neuroimaging, Charité Universitätsmedizin Berlin, corporate member of the Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health

2. Max Planck School of Cognition

3. Department of Psychology, Humboldt-Universität zu Berlin

4. Research Training Group “Extrospection” and Berlin School of Mind and Brain, Humboldt-Universität zu Berlin

5. Institute of Psychology, Otto von Guericke University

6. Max Planck Institute for Human Cognitive and Brain Sciences

7. German Center for Neurodegenerative Diseases

8. Research Cluster of Excellence “Science of Intelligence”, Technische Universität Berlin

Abstract

Recent studies have provided evidence for the concurrent encoding of sensory percepts and visual working memory contents (VWM) across visual areas; however, it has remained unclear how these two types of representations are concurrently present. Here, we reanalyzed an open-access fMRI dataset where participants memorized a sensory stimulus while simultaneously being presented with sensory distractors. First, we found that the VWM code in several visual regions did not generalize well between different time points, suggesting a dynamic code. A more detailed analysis revealed that this was due to shifts in coding spaces across time. Second, we collapsed neural signals across time to assess the degree of interference between VWM contents and sensory distractors, specifically by testing the alignment of their encoding spaces. We find that VWM and feature-matching sensory distractors are encoded in separable coding spaces. Together, these results indicate a role of dynamic coding and temporally stable coding spaces in helping multiplex perception and VWM within visual areas.

Publisher

eLife Sciences Publications, Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3