The validity and reliability of wearable devices for the measurement of vertical oscillation for running

Author:

Smith Craig P.ORCID,Fullerton Elliott,Walton Liam,Funnell Emelia,Pantazis Dimitrios,Lugo Heinz

Abstract

Wearable devices are a popular training tool to measure biomechanical performance indicators during running, including vertical oscillation (VO). VO is a contributing factor in running economy and injury risk, therefore VO feedback can have a positive impact on running performance. The validity and reliability of the VO measurements from wearable devices is crucial for them to be an effective training tool. The aims of this study were to test the validity and reliability of VO measurements from wearable devices against video analysis of a single trunk marker. Four wearable devices were compared: the INCUS NOVA, Garmin Heart Rate Monitor-Pro (HRM), Garmin Running Dynamics Pod (RDP), and Stryd Running Power Meter Footpod (Footpod). Fifteen participants completed treadmill running at five different self-selected speeds for one minute at each speed. Each speed interval was completed twice. VO was recorded simultaneously by video and the wearables devices. There was significant effect of measurement method on VO (p < 0.001), with the NOVA and Footpod underestimating VO compared to video analysis, while the HRM and RDP overestimated. Although there were significant differences in the average VO values, all devices were significantly correlated with the video analysis (R > = 0.51, p < 0.001). Significant agreement between repeated VO measurements for all devices, revealed the devices to be reliable (ICC > = 0.948, p < 0.001). There was also significant agreement for VO measurements between each device and the video analysis (ICC > = 0.731, p < = 0.001), therefore validating the devices for VO measurement during running. These results demonstrate that wearable devices are valid and reliable tools to detect changes in VO during running. However, VO measurements varied significantly between the different wearables tested and this should be considered when comparing VO values between devices.

Funder

Innovate UK

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3