From data to decision: Machine learning determination of aerobic and anaerobic thresholds in athletes

Author:

Tomaszewski MichałORCID,Lukanova-Jakubowska Anna,Majorczyk EdytaORCID,Dzierżanowski Łukasz

Abstract

Lactate analysis plays an important role in sports science and training decisions for optimising performance, endurance, and overall success in sports. Two parameters are widely used for these goals: aerobic (AeT) and anaerobic (AnT) thresholds. However, determining AeT proves more challenging than AnT threshold due to both physiological intricacies and practical considerations. Thus, the aim of this study was to determine AeT and AnT thresholds using machine learning modelling (ML) and to compare ML-obtained results with the parameters’ values determined using conventional methods. ML seems to be highly useful due to its ability to handle complex, personalised data, identify nonlinear relationships, and provide accurate predictions. The 183 results of CardioPulmonary Exercise Test (CPET) accompanied by lactate and heart ratio analyses from amateur athletes were enrolled to the study and ML models using the following algorithms: Random Forest, XGBoost (Extreme Gradient Boosting), and LightGBM (Light Gradient Boosting Machine) and metrics: R2, mean absolute error (MAE), mean squared error (MSE) and root mean square error (RMSE). The regressors used belong to the group of ensemble learning algorithms that combine the predictions of multiple base models to improve overall performance and counteract overfitting to training data. Based on evaluation metrics, the following models give the best predictions: for AeT: Random Forest has an R2 value of 0.645, MAE of 4.630, MSE of 44.450, RMSE of 6.667; and for AnT: LightGBM has an R2 of 0.803, the highest among the models, MAE of 3.439, the lowest among the models, MSE of 20.953, and RMSE of 4.577. Outlined research experiments, a comprehensive review of existing literature in the field, and obtained results suggest that ML models can be trained to make personalised predictions based on an individual athlete’s unique physiological response to exercise. Athletes exhibit significant variation in their AeT and AT, and ML can capture these individual differences, allowing for tailored training recommendations and performance optimization.

Funder

Politechnika Opolska

Publisher

Public Library of Science (PLoS)

Reference50 articles.

1. Anaerobic threshold: its concept and role in endurance sport;AK Ghosh;The Malaysian journal of medical sciences: MJMS,2004

2. Lactate threshold concepts: how valid are they?;O Faude;Sports Medicine,2009

3. Newer Perspectives in Lactate Threshold Estimation for Endurance Sports—A Mini-Review;A Krishnan;Central European Journal of Sport Sciences and Medicine,2021

4. Methodological approach to the first and second lactate threshold in incremental cardiopulmonary exercise testing;RK Binder;European Journal of Cardiovascular Prevention Rehabilitation,2008

5. Heart Rate Acquisition and Threshold-Based Training Increases Oxygen Uptake at Metabolic Threshold in Triathletes: A Pilot Study;EV Neufeld;International journal of exercise science,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3