Sensitiveness of Variables Extracted from a Fitness Smartwatch to Detect Changes in Vertical Impact Loading during Outdoors Running

Author:

Pirscoveanu Cristina-Ioana1ORCID,Oliveira Anderson Souza2ORCID

Affiliation:

1. Department of Health Science and Technology, Aalborg University, 9210 Aalborg, Denmark

2. Department of Materials and Production, Aalborg University, 9220 Aalborg, Denmark

Abstract

Accelerometry is becoming a popular method to access human movement in outdoor conditions. Running smartwatches may acquire chest accelerometry through a chest strap, but little is known about whether the data from these chest straps can provide indirect access to changes in vertical impact properties that define rearfoot or forefoot strike. This study assessed whether the data from a fitness smartwatch and chest strap containing a tri-axial accelerometer (FS) is sensible to detect changes in running style. Twenty-eight participants performed 95 m running bouts at ~3 m/s in two conditions: normal running and running while actively reducing impact sounds (silent running). The FS acquired running cadence, ground contact time (GCT), stride length, trunk vertical oscillation (TVO), and heart rate. Moreover, a tri-axial accelerometer attached to the right shank provided peak vertical tibia acceleration (PKACC). The running parameters extracted from the FS and PKACC variables were compared between normal and silent running. Moreover, the association between PKACC and smartwatch running parameters was accessed using Pearson correlations. There was a 13 ± 19% reduction in PKACC (p < 0.005), and a 5 ± 10% increase in TVO from normal to silent running (p < 0.01). Moreover, there were slight reductions (~2 ± 2%) in cadence and GCT when silently running (p < 0.05). However, there were no significant associations between PKACC and the variables extracted from the FS (r < 0.1, p > 0.05). Therefore, our results suggest that biomechanical variables extracted from FS have limited sensitivity to detect changes in running technique. Moreover, the biomechanical variables from the FS cannot be associated with lower limb vertical loading.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference41 articles.

1. A Review on Accelerometry-Based Gait Analysis and Emerging Clinical Applications;Jarchi;Rbme,2018

2. Objective physical activity and physical performance in middle-aged and older adults;Spartano;Exp. Gerontol.,2019

3. Tibial Acceleration during Running Is Higher in Field Testing Than Indoor Testing;Milner;Med. Sci. Sport. Exerc.,2020

4. Tibial Acceleration Measured from Wearable Sensors Is Associated with Loading Rates in Injured Runners;Tenforde;PMR,2020

5. Use of wearables: Tracking and retraining in endurance runners;Moore;Curr. Sport. Med. Rep.,2019

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3