A new hybrid optimization approach using PSO, Nelder-Mead Simplex and Kmeans clustering algorithms for 1D Full Waveform Inversion

Author:

Aguiar Nascimento RutinaldoORCID,Neto Álvaro Barroca,Bezerra Yuri Shalom de Freitas,do Nascimento Hugo Alexandre Dantas,Lucena Liacir dos Santos,de Freitas Joaquim Elias

Abstract

The FWI is formulated as a nonlinear optimization problem that traditionally uses local (derivative-based) minimization to find the scalar field of properties that best represents the field seismic data. This problem has a high computational cost and accuracy limited to local minima, in addition to suffering from a slow convergence rate (Cycle Skipping). Therefore, we developed a two-phase hybrid optimization algorithm based on DFO algorithms. The first use global minimization and clustering technique. The second use local minimization. In phase 1 we adopted the modified PSO and K-means algorithms and in phase 2, we adopted the ANMS. We call the hybrid algorithm of the PSO-Kmeans-ANMS. Where K-means is responsible for dividing swarms of particles into 2 clusters at every instant. This strategy aims to automatically balance the mechanisms of exploration and exploitation of the parameter search space by the hybrid algorithm, allowing one to find more precise solutions and consequently improving its convergence. The PSO-Kmeans-ANMS algorithm was validated on the set of 12 benchmark functions and applied to the FWI 1D problem. We compared PSO-Kmeans-ANMS with classic PSO, modified PSO, and ANMS algorithms. The metrics used were are the average execution time and the success rate (an error of ± 4% of the optimal solution). In all validation experiments and the FWI application, the PSO-Kmeans-ANMS performed well in terms of robustness and computational efficiency. In the case of FWI, there was a significant reduction in computational cost, thus presenting a relevant result.

Funder

Agência Nacional de Petróleo, Gás Natural e Biocombustíveis

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3