Hybrid optimization methods for geophysical inversion

Author:

Chunduru Raghu K.1,Sen Mrinal K.2,Stoffa Paul L.3

Affiliation:

1. Institute for Geophysics and Department of Geological Sciences, The University of Texas at Austin, 8701 Mopac Expressway, Austin, Texas 78759-8397

2. Institute for Geophysics, The University of Texas at Austin, 8701 Mopac Expressway, Austin, Texas 78759-8397.

3. Institute for Geophysics and Department of Geological Sciences, The University of Texas at Austin, 8701 Mopac Expressway, Austin, Texas 78759-8397.

Abstract

Local and global optimization algorithms are used commonly in geophysical data inversion. Each type of algorithm has unique advantages and disadvantages. Here we propose several methods of combining the two algorithms such that we can overcome their drawbacks and make use of the salient features of the two methods. In particular, we combined a local conjugate gradient (CG) method with a global very fast simulated annealing (VFSA) approach to solve problems of geophysical interests. We conducted a systematic study to find an efficient strategy to combine CG and VFSA optimization schemes and recommend a couple of ways for future implementations. Seven different hybrid algorithms were first tested on a set of field 1-D Schlumberger resistivity sounding data and their performances were compared with stand‐alone genetic algorithm (GA), simulated annealing, and local search algorithms. Almost all of the proposed hybrid algorithms were found to be computationally more efficient than the conventional global optimization approaches. Having found the most efficient of the hybrid approaches we apply them to the problem of seismic velocity analysis using seismograms recorded in the offset‐time domain. Finally, we applied the hybrid algorithm to a 2-D field resistivity profiling data collected over a disseminated sulfide zone at Safford Arizona and compared our hybrid inversion results with the previously published results.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3