MetaWorks: A flexible, scalable bioinformatic pipeline for high-throughput multi-marker biodiversity assessments

Author:

Porter Teresita M.ORCID,Hajibabaei Mehrdad

Abstract

Multi-marker metabarcoding is increasingly being used to generate biodiversity information across different domains of life from microbes to fungi to animals such as for molecular ecology and biomonitoring applications in different sectors from academic research to regulatory agencies and industry. Current popular bioinformatic pipelines support microbial and fungal marker analysis, while ad hoc methods are often used to process animal metabarcode markers from the same study. MetaWorks provides a harmonized processing environment, pipeline, and taxonomic assignment approach for demultiplexed Illumina reads for all biota using a wide range of metabarcoding markers such as 16S, ITS, and COI. A Conda environment is provided to quickly gather most of the programs and dependencies for the pipeline. Several workflows are provided such as: taxonomically assigning exact sequence variants, provides an option to generate operational taxonomic units, and facilitates single-read processing. Pipelines are automated using Snakemake to minimize user intervention and facilitate scalability. All pipelines use the RDP classifier to provide taxonomic assignments with confidence measures. We extend the functionality of the RDP classifier for taxonomically assigning 16S (bacteria), ITS (fungi), and 28S (fungi), to also support COI (eukaryotes), rbcL (eukaryotes, land plants, diatoms), 12S (fish, vertebrates), 18S (eukaryotes, diatoms) and ITS (fungi, plants). MetaWorks properly handles ITS by trimming flanking conserved rRNA gene regions as well as protein coding genes by providing two options for removing obvious pseudogenes. MetaWorks can be downloaded from https://github.com/terrimporter/MetaWorks and quickstart instructions, pipeline details, and a tutorial for new users can be found at https://terrimporter.github.io/MetaWorksSite.

Funder

Genome Canada

Ontario Genomics

Genomics Research and Development Initiative

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference58 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3