Unveiling invasive insect threats to plant biodiversity: Leveraging eDNA metabarcoding and saturated salt trap solutions for biosurveillance

Author:

Milián-García YoamelORCID,Pyne Cassandre,Lindsay Kate,Romero Adriana,Hanner Robert H.

Abstract

The negative global impacts of invasive alien species (IAS) on biodiversity are second only to habitat loss. eDNA metabarcoding allows for a faster and more comprehensive evaluation of community species composition, with a higher taxonomic resolution and less taxonomic expertise required than traditional morphological-based biosurveillance. These advantages have positioned eDNA metabarcoding as the standard method for molecular-based detection of invasive alien species, where fast and accurate detectability allows prompt responses to mitigate their adverse effects. Here, eDNA metabarcoding is used for biosurveillance of invasive alien species regulated by Canada in high-risk areas with four main objectives: i) validate the effectiveness of eDNA metabarcoding of salt trap solutions as a molecular technique for IAS detection, ii) compare detection from DNA extracts obtained from filter quarters versus whole filters, iii) benchmark two different bioinformatic pipelines (MetaWorks and mBRAVE), and iv) compare canopy and ground level trapping. eDNA from up to five IAS (Agrilus planipennis, Daktulosphaira vitifoliae, Lymantria dispar, Popillia japonica, and Trichoferus campestris) were successfully detected across years from 2017 to 2022 in southern Ontario, Canada, with successful morphological validation for all except Lymantria dispar and Trichoferus campestris. Analysis of filter quarters in contrast to whole filters was demonstrated to be insufficient for effective IAS detection in each sample. All IAS were detected in only one filter quarter, suggesting a patchy eDNA distribution on the filter. The MetaWorks and mBRAVE bioinformatics pipelines proved effective in identifying IAS, with MetaWorks yielding a higher success rate when comparing molecular and morphological identifications. Ground-level and canopy-level sampling showed differential IAS recovery rates based on the molecular detection, which also varied per collection year, with all found IAS detected at the canopy level in 2022 while only one (Lymantria dispar) in 2020. The present study ratifies the efficacy and importance of eDNA-based detection in a regulatory context and the utility of adding eDNA metabarcoding of saturated salt trap solutions, a critical tool for IAS detection.

Funder

Canadian Food Inspection Agency

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference75 articles.

1. Invasion Biology: Specific Problems and Possible Solutions;F Courchamp;Trends in Ecology & Evolution,2017

2. metabaR: An r package for the evaluation and improvement of DNA metabarcoding data quality;L Zinger;Methods in Ecology and Evolution,2021

3. eDNAFlow, an automated, reproducible and scalable workflow for analysis of environmental DNA (eDNA) sequences exploiting Nextflow and Singularity.;M Mousavi‐Derazmahalleh;Molecular Ecology Resources.,2021

4. Optimization and validation of a cost-effective protocol for biosurveillance of invasive alien species;Y Milián-García;Ecology and Evolution,2020

5. BOLD: The Barcode of Life Data System (http://www.barcodinglife.org).;S Ratnasingham;Molecular Ecology Notes,2007

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3