Author:
Pérez-Fleitas Etiam,Milián-García Yoamel,Sosa-Rodríguez Gustavo,Amato George,Rossi Natalia,Shirley Matthew H.,Hanner Robert H.
Abstract
AbstractCrocodylians globally face considerable challenges, including population decline and extensive habitat modification. Close monitoring of crocodylian populations and their habitats is imperative for the timely detection of population trends, especially in response to management interventions. Here we use eDNA metabarcoding to identify the Critically Endangered Crocodylus rhombifer and the Vulnerable C. acutus, as well as vertebrate community diversity, in Cuba’s Zapata Swamp. We tested four different primer sets, including those used previously in Crocodylus population genetic and phylogenetic research, for their efficiency at detecting crocodylian eDNA. We detected C. rhombifer eDNA in 11 out of 15 sampled locations within its historical geographic distribution. We found that data analyses using the VertCOI primers and the mBRAVE bioinformatics pipeline were the most effective molecular marker and pipeline combination for identifying this species from environmental samples. We also identified 55 vertebrate species in environmental samples across the four bioinformatics pipelines— ~ 85% known to be present in the Zapata ecosystem. Among them were eight species previously undetected in the area and eight alien species, including known predators of hatchling crocodiles (e.g., Clarias sp.) and egg predators (e.g., Mus musculus). This study highlights eDNA metabarcoding as a powerful tool for crocodylian biomonitoring within fragile and diverse ecosystems, particularly where fast, non-invasive methods permit detection in economically important areas and will lead to a better understanding of complex human-crocodile interactions and evaluate habitat suitability for potential reintroductions or recovery programs for threatened crocodylian species.
Publisher
Springer Science and Business Media LLC
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献