A simulation study: Improved ratio-in-regression type variance estimator based on dual use of auxiliary variable under simple random sampling

Author:

Ahmad Sohaib,Hussain SardarORCID,Ullah Kalim,Zahid Erum,Aamir Muhammad,Shabbir Javid,Ahmad ZubairORCID,Alshanbari Huda M.ORCID,Alajlan Wejdan

Abstract

In this article, we proposed an improved finite population variance estimator based on simple random sampling using dual auxiliary information. Mathematical expressions of the proposed and existing estimators are obtained up to the first order of approximation. Two real data sets are used to examine the performances of a new improved proposed estimator. A simulation study is also recognized to assess the robustness and generalizability of the proposed estimator. From the result of real data sets and simulation study, it is examining that the proposed estimator give minimum mean square error and percentage relative efficiency are higher than all existing counterparts, which shown the importance of new improved estimator. The theoretical and numerical result illustrated that the proposed variance estimator based on simple random sampling using dual auxiliary information has the best among all existing estimators.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference41 articles.

1. Use of auxiliary information in estimating the finite population variance;AK Das;Sankhya, c,1978

2. Some improved ratio-type estimators of finite population variance in sample surveys;B Prasad;Communications in Statistics-Theory and Methods,1990

3. Use of extreme values to estimate finite population mean under pps sampling scheme;S Ahmad;Journal of Reliability and Statistical Studies,2018

4. Improvement in variance estimation in simple random sampling;C Kadilar;Communications in Statistics—Theory and Methods,2007

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3