Enhanced Estimation of the Population Mean Using Two Auxiliary Variables under Probability Proportional to Size Sampling

Author:

Ahmad Sohaib1ORCID,Zahid Erum2ORCID,Shabbir Javid34ORCID,Aamir Muhammad1ORCID,Onyango Ronald5ORCID

Affiliation:

1. Department of Statistics, Abdul Wali Khan University, Mardan, Pakistan

2. Department of Applied Mathematics and Statistics, Institute of Space Technology, Pakistan

3. Department of Statistics, Quaid-i-Azam University, Islamabad, Pakistan

4. Department of Statistics, University of Wah, Wah Cantt, Pakistan

5. Department of Applied Statistics, Financial Mathematics and Actuarial Science, Jaramogi Oginga Odinga University of Science and Technology, Bondo, Kenya

Abstract

In some situations, the population of interest differs significantly in size, for example, in a medical study, the number of patients having a specific disease and the size of health units may vary. Similarly, in a survey related to the income of a household, the household may have a different number of siblings, and then in such situations, we use probability proportional to size sampling. In this article, we have proposed an improved class of estimators for the estimation of population mean on the basis of probability proportional to size (PPS) sampling, using two auxiliary variables. The mathematical expressions of the bias and mean square error (MSE) are derived up to the first order of approximation. Four real datasets and a simulation study are conducted to assess the efficiency of the improved class of estimators. It is found from the real datasets and a simulation study, that the proposed generalized class of estimators produced better results in terms of minimum MSE and higher PRE, as related to other considered estimators. An empirical study is given to support the theoretical results. The theoretical study also demonstrates that the proposed generalized class of estimators outperforms the existing estimators.

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3